Value Iteration with Guessing for Markov Chains and Markov Decisions Processes

Krishnendu Chatterjee

Raimundo Saona

Mahdi Jafariraviz

Jakub Svoboda

TACAS 2025, Hamilton, Canada

Incorporating Binary Search into Value Iteration in MDPs:

Practical implementation

Stochastic system

Stochastic system, after guessing

Stochastic system, after guessing

Verifying a guess

Lemma

Consider a game G, a state $s \in S$ and a guess $\gamma \in [0,1]$.

$$\mathrm{Update}(s,(\gamma,\mathsf{val}_{G[s=\gamma]})) > \gamma \quad \Leftrightarrow \quad \mathsf{val}_{G}(s) > \gamma.$$

Approximately verifying a guess

Lemma

Consider a game G, a state $s \in S$, a guess $\gamma \in [0,1]$, and $\varepsilon > 0$.

$$\mathrm{Update}(s,(\gamma,\mathsf{val}_{G[s=\gamma]})) + p_{\min}^{|S|} \varepsilon > \gamma \quad \Rightarrow \quad \mathsf{val}_{G}(s) > \gamma - \varepsilon.$$

Can we speed up Value Iteration?

Markov Chain

Reachability values

Update operator

For $v \in \mathbb{R}^S$,

$$\mathrm{Update}(v)(s) := \max_{a \in A} \left\{ \sum_{s' \in S} p(s' \mid s, a) \ v(s') \right\}$$

The reachability value is the least solution with

$$\mathsf{val}(s_+) = 1$$
 $\mathsf{val} = \mathsf{Update}(\mathsf{val})$

Moreover, if
$$v_0(s)=\mathbb{1}[s=s_+]$$
 and $v_{i+1}:=\mathrm{Update}(v_i)$, then
$$(v_i) \xrightarrow[i \to \infty]{} \mathsf{val}$$

Value Iteration speed

Lemma

The speed of convergence is driven by

$$\|\mathbf{v}_{|S|i} - \mathsf{val}\|_{\infty} \le \left(1 - p_{\mathsf{min}}^{|S|}\right)^i \|\mathbf{v}_0 - \mathsf{val}\|_{\infty}$$

So, to have an ε -approximation of val, Value Iteration requires many iterations:

$$(-\log(\varepsilon)|S|/p_{\mathsf{min}})^{\Omega(|S|)}$$

In other words, exponentially many.

Value Iteration speed: Levels

Lemma

The speed of convergence is driven by

$$\|v_{Li} - \mathsf{val}\|_{\infty} \le \left(1 - p_{\mathsf{min}}^L\right)^i \|v_0 - \mathsf{val}\|_{\infty}$$

where $L \leq |S|$ is the maximum graph distance to the target or sink. An ε -approximation of val requires many iterations:

$$(-\log(\varepsilon)L/p_{\min})^{\Omega(L)}$$

In other words, exponentially many.

Stochastic system

Value Iteration speed, improved

Theorem

To have an ε -approximation of val, we require fewer iterations:

$$(-\log(\varepsilon)|S|/p_{\mathsf{min}})^{\mathcal{O}(\sqrt{|S|})}$$

In other words, subexponentially many.

MDPs

Value Iteration is not accelerated by having low distance to the targets in MDPs.

What about practical speedups?

Practical implementation

Guessing, solving, and verifying implies a recursive algorithm. Recursion depth is given by the number of states guessed. Guessing more than 3 states is impractical.

Practical considerations:

- Early Verification of a Guess
- Reusing Bounds
- Picking the Guessed States
- Benefiting from VI

Practical Evaluation

We consider the Quantitative Verification Benchmark Set (QVBS). The following VI-based variants were considered.

- Interval VI Classic two-sided VI
- Optimistic VI
 Candidates for upper or lower bounds are proposed while Interval VI is running
- Sound VI
 Deduce upper bounds based on lower bounds
- Guessing VI
 Our algorithm

Grouping results

- Group 1
 All algorithms are fast, i.e., they take at most 0.1 seconds.
 170 instances.
- Group 2
 The fastest and slowest algorithms
 are only at most 1.10 times of each other.

 135 instances.
- Group 3
 Guessing VI is not the fastest approach.

 83 instances.
- Group 4
 All other instances not considered before.

 86 instances.

Performance: Guessing VI

Time in seconds of all algorithms over instances in Groups 3 and 4 in increasing order **according to GVI** and displayed in logarithmic scale.

Performance: Interval VI

Time in seconds of all algorithms over instances in Groups 3 and 4 in increasing order **according to IVI** and displayed in logarithmic scale.

Performance: Optimistic VI

Time in seconds of all algorithms over instances in Groups 3 and 4 in increasing order **according to OVI** and displayed in logarithmic scale.

Performance: Sound VI

Time in seconds of all algorithms over instances in Groups 3 and 4 in increasing order **according to SVI** and displayed in logarithmic scale.

Performance: Guessing VI

Time in seconds of all algorithms over instances in Groups 3 and 4 in increasing order **according to GVI** and displayed in logarithmic scale.

Thank you!